electricity

The Surprisingly Large Energy Footprint of the Digital Economy [UPDATE]

Which uses more electricity: the iPhone in your pocket, or the refrigerator humming in your kitchen? Hard as it might be to believe, the answer is probably the iPhone. As you can read in a post on a new report by Mark Mills — the CEO of the Digital Power Group, a tech- and investment-advisory firm — a medium-size refrigerator that qualifies for the Environmental Protection Agency’s Energy Star rating will use about 322 kW-h a year. The average iPhone, according to Mills’ calculations, uses about 361 kW-h a year once the wireless connections, data usage and battery charging are tallied up. And the iPhone — even the latest iteration — doesn’t even keep your beer cold. (Hat tip to the Breakthrough Institute for noting the report first.) [UPDATE: You can see the calculations behind the specific iPhone comparison, which was done by Max Luke of the Breakthrough Institute, at the bottom of the post. It's important to note that the amount of energy used by any smartphone will vary widely depending on how much wireless data the device is using, as well as the amount of power consumed in making those wireless connections—estimates for which vary. The above examples assumes a relatively heavy use of 1.58 GB a month—a figure taken from a survey of Verizon iPhone users last year. (Details at bottom of post.) That accounts for the high-end estimate of the total power the phone would be consuming over the course of a year. NPD Connected Intelligence, by contrast, estimates that the average smartphone is using about 1 GB of cellular data a month, and in the same survey that reported high data use from Verizon iPhone users, T-Mobile iPhone users reported just 0.19 GB of data use a month—though that's much lower than any other service. Beyond the amount of wireless data being streamed, total energy consumption also depends on estimates of how much energy is consumed per GB of data. The top example assumes that every GB burns through 19 kW of electricity. That would be close  to

Amid Economic and Safety Concerns, Nuclear Advocates Pin Their Hopes on New Designs

For 28-year-old Leslie Dewan — and for a growing number of other young scientists interested in energy — nuclear energy isn’t about meltdowns and catastrophe. They see atomic power not as an existential threat to the planet but instead as the best way to save it, and they’re trying to revive the stalled industry with next-generation reactor designs that could change the way a skeptical public views atomic energy. Dewan just finished her doctorate* in nuclear engineering at MIT, and in her spare time she co-founded a start-up called Transatomic Power, which has plans to build a safer and cheaper nuclear reactor, one that couldn’t melt down like the older plants at Chernobyl or Fukushima. “I’ve always been concerned about global warming,” she says. “It seemed to me like working in nuclear power was a logical way to do something to help the environment.” But the nuclear industry today faces major challenges. Yes, there are scores of nuclear reactors being built around the world — including in the U.S., where new construction ceased for more than three decades beginning in the mid-1970s. But existing nuclear plants are being shut down out of concern for safety and cost. Germany has already announced that it will be phasing out all of its atomic plants over the next decade, and the U.S. has seen plants close early — including the San Onofre nuclear plant in southern California, which is being decommissioned because of equipment failure. The Fukushima disaster — while unlikely to have a measurable health effect — could cost more than $100 billion to clean up. This past weekend brought news of a scandal in South Korea over faked safety tests and bribes at nuclear plants. Last week Duke Energy shelved a planned new plant in Florida because of licensing problems and concerns about cost recovery. With fracking keeping the cost of natural gas so low, any new nuclear plant faces both economic and safety headwinds. (MORE: Nuclear Energy Is Largely Safe. But Can It Be Cheap?) So if nuclear is going

Radioactive Green: Pandora’s Promise Rethinks Nuclear Power

Early in the new documentary Pandora’s Promise, which opens nationwide today, British environmental writer Mark Lynas travels to the Japanese town of Fukushima, now famous as the site of a 2011 nuclear meltdown. Lynas is a longtime nuclear critic who has since rethought his opposition to atomic power. Dressed in protective equipment and carrying a radiation detector, Lynas roams the spooky, abandoned streets of Fukushima. The desolation is apparent, and it touches even a staunch atomic advocate like Lynas. “There’s no other energy source that does this, leaves huge areas contaminated by its strange invisible presence,” he says. “I could see why we’d want to do without nuclear power.” That dread is why nuclear power—which provides nearly 20% of U.S. electricity—is considered so dangerous by so many. Yet the Fukushima example actually shows something else. According to a recent U.N. report, there will likely be no detectable health impacts from the radiation released by the Fukushima meltdown. The biggest catastrophe in nuclear power since Chernobyl has turned out less catastrophic than it seemed. And that’s one of many reasons that nuclear energy, which has long been demonized by environmentalists, deserves a fresh look. That fresh look is precisely what Pandora’s Promise sets out to offer. Loosely following the stories of a handful of writers and environmentalists who have reconsidered their knee-jerk opposition to nukes, the film makes the case that nuclear energy really does have the power to save the world. “It’s the elephant in the room that no one talks about,” says Robert Stone, the director of Pandora’s Promise (and the Academy Award-nominated filmmaker of the nuclear weapons documentary Radio Bikini). “They’re ringing a five-alarm fire bell on the climate crisis, so it’s time to rethink that fear of nuclear.” (MORE: What Open-Air Nuclear Tests Tell Us About the Brain) Nuclear plants are the only source of power—other than hydroelectric, which has largely hit its limits—that can supply base-load electricity on a mass scale without producing greenhouse-gas emissions. Renewable sources like wind and solar are important and growing, but